Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries

Author:

Sharma BhamitiORCID,Alolaywi Haidar Y.,Tan Bing,Shepard David,Li Yunkui,Liao Yuhao,Cheng Yang-TseORCID

Abstract

Lithium (Li) metal batteries are attractive due to their high gravimetric and volumetric energy densities. However, they can fail catastrophically due to dendritic nucleation, growth, and penetration through the polypropylene (PP) or polyethylene (PE) separators. Poor electrolyte wetting and non-uniform Li ion flux are known to affect Li dendrite formation, especially since the PP/PE separators have non-uniform pore size distribution and typical organic electrolytes do not wet them well. In this work, we demonstrate that a porous zeolite coating on a commercial PP separator can improve electrolyte wettability and through plane ionic conductivity, giving rise to more uniform Li flux. Consequently, coated separator can delay dendrite penetration and enhance cell performance and safety. We tested Celgard 2400 (uncoated) and zeolite-coated separator (coated) in high energy NMC||Li cells for their rate capability and cycle life performance. Rate capability test for these cells shows that the additional resistance due to the zeolite coating can negatively impact the cell performance at high C-rates. However, cells with the coated separator outperform those with uncoated separator in the cycle life test with improved capacity retention. Symmetric cell studies performed to understand the differences in Li plating morphology indicate initial lower overpotential for the coated separator cells, revealing improved electrolyte wetting and relatively uniform Li flux. Scanning electron microscopy (SEM) reveals zeolite-coating microstructure with evenly distributed zeolite particles and cycled Li metal electrode morphologies. SEM images show much smoother Li plating morphology on Li metal surface in the cells with coated separators. This study highlights the potential of using zeolite-coated separators to enhance lithium metal battery (LMB) performance and safety.

Funder

University of Kentucky

Pacific Industrial Development Corporation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference67 articles.

1. An overview of energy sources for electric vehicles;Chau;Energy Convers. Manage.,1999

2. The birth of the lithium-ion battery;Yoshino;Angew. Chem. Int. Ed.,2012

3. History, evolution, and future status of energy storage;Whittingham;Proceedings of the IEEE,2012

4. Li-ion batteries: basics, progress, and challenges;Deng;Energy Science & Engineering,2015

5. Recent developments in lithium ion batteries;Wakihara;Materials Science and Engineering: R: Reports,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3