Fabrication of FeCo/Multidimensional Carbon-Based Nanocomposites as Excellent Cathodic Catalysts of Zn-Air Battery

Author:

Fang Can,Yi QingfengORCID,Chen Aling,Wang YuebingORCID,Wang Yaping,Li Xiaofang

Abstract

Zn-air battery, like other electrochemical power devices such as fuel cells, has the advantages of environmental friendliness and high energy convert efficiency. One of the main problems facing Zn-air battery is how to improve the electrocatalytic activity of the cathode catalyst with low cost and simple preparation process. Herein, N-doped carbon nanosheets/nanotubes composite loaded Fe-Co nanoparticles were prepared via a facile pyrolysis of the solid mixture composed of dicyandiamide, sucrose, cobalt nitrate, iron nitrate, iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc). The samples were well characterized and their electroactivity towards oxygen reduction reaction (ORR) was tested in a full pH range including acidic, neutral and alkaline media. In 0.1 mol l−1 KOH solution, the ORR onset potential and half-wave potential of the FeCo-FePc/NTu-CNsh are 1.03 V and 0.91 V, which are very close to the performance of commercial Pt/C catalyst (40%). In neutral solution (1 M KCl+4 M NH4Cl), FeCo-FePc/NTu-CNsh presents an ORR onset potential of 0.93 V and half-wave potential of 0.82 V, which are superior to Pt/C with onset potential of 0.92 V and half-wave potential of 0.81 V. The home-made Zn-air battery with the prepared samples as the cathodic catalysts reveal excellent performance, and the FeCo-FePc/NTu-CNsh Zn-air battery presents a maximum power density of 281.8 mW·cm−2 as well as the high stability at different discharging current densities.

Funder

Innovation training program for college students in Hunan Province

Research and Development Planning Projects in Key Areas of Hunan Province

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3