Abstract
Applying nitrogen-modified carbon support in PEMFCs has been attracting arising interest due to the resulting performance enhancement. In the present study, we attempt to uncover the origin and gain a deeper understanding of the different N-modification processes, whose influences are responsible for the performance improvement. By utilizing chemically modified Ketjenblack supports comprising altered fraction of N-functionalities, we investigate the underlying mechanism of the drastically reduced voltage losses under fuel cell operation conditions. In all, we demonstrate the key role of support modification induced by ammonia in strengthened support/ionomer interactions and alter physico-chemical properties of the carbon support contributing towards enhanced MEA performance. With the use of X-ray photoelectron spectroscopy (XPS), we show unambiguous evidences that not all N modified surfaces yield the desired performance increase. Rather, the latter depends on a complex interplay between different electrochemical parameter and catalyst properties. We want to emphasize the ionomer/support interaction as one important factor for enhanced ionomer distribution and present a prove of a direct interaction between the ionomers´ sidechains and N-functional groups of the support.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献