Abstract
Most commercial anion exchange membranes (AEMs) deploy quaternary ammonium moieties. Alternative cation moieties have been explored in AEMs for fuel cells, but there are no studies focused examining alternative tethered cations in AEMs for ionic separations—such as organic acid anion transport via electrodialysis. H-cell and conductivity experiments demonstrate that tethered benzyl 1-methyl imidazolium groups in polysulfone AEMs enhance lactate conductivity by 49% and improved lactate anion flux by 24x when compared to a quaternary benzyl ammonium polysulfone AEM. An electrodialysis demonstration with the imidazolium-type AEM showed a 2x improvement in lactate anion flux and 20% improvement in permselectivity when benchmarked against the quaternary ammonium AEM. Molecular dynamics and 2D NOESY NMR revealed closer binding of lactate anions to the imidazolium cations when compared to the quaternary ammonium cation. It is posited that this closer binding is responsible to greater flux values observed with imidazolium-type AEM.
Funder
Argonne National Laboratory
Jack Kent Cooke Foundation
National Science Foundation Graduate Research Fellowship
U.S. Department of Energy Office of Science Graduate Student Research Program
U.S. Department of Energy Office of Basic Energy Sciences Separation Science
U.S. Department of Energy Bioenergy Technologies Office
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献