Confinement and Diffusion of Small Molecules in a Molecular-Scale Tunnel

Author:

Chavan Kanchan Suklal,Barton Scott Calabrese

Abstract

Multi-step reaction cascades can be designed to include channeling mechanisms, which provide electrostatic or steric control over intermediate transport such that intermediates do not escape to the bulk between active sites. Physical confinement of the intermediate pathway between sites retains intermediate from bulk access and thus provides high transport efficiency. In this work, we use molecular dynamics to study the transport of intermediates (charged oxalate and neutral ethanol) inside a nanochannel represented by a single-walled carbon nanotube (SWCNT). This approach reveals that solvent orientation highly impacts intermediate transport. At small nanochannel diameter near 1 nm, highly structured solvent water and Knudsen diffusion decreases effective intermediate diffusivity. Finally, modified SWCNT termini with electrostatically-charged carboxylate groups are shown to increase intermediate retention for both charged and uncharged intermediates by up to five-fold. When catalyst sites are located within the nanochannel, decreased diffusion rate and increased retention time will enhance cascade efficiency.

Funder

Army Research Office

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3