Abstract
Liquid alkaline water electrolyzers (LAWEs), being the most commercially mature electrolysis technology, play a pivotal role in large-scale hydrogen production. However, LAWEs suffer from low operational efficiency, primarily due to un-optimized electrode structure and chemical compositions. Thus, we investigated how various electrode configurations could impact LAWE performance. Our results show that Ni felt electrodes outperform the conventional Ni foam thanks to improved electrochemical active surface area (ECSA) and preferred electrode surface structure that minimizes the micro-gaps in between the electrode and separator. By comparing the stainless steel (SS) felt electrodes with Ni felt electrodes, SS not only shows better oxygen evolution reaction activity but also improved hydrogen evolution reaction activity, which is less studied in the literature. We also show that a bilayer structure with small pore radius facing the separator could further improve LAWE performance by further optimizing interfacial contact between electrode and separator. These findings enable LAWEs to sustain 2 A cm−2 at 2.2 V and operate steadily at 1 A cm−2 for nearly 600 h with negligible performance decay. Our studies establish criteria for selecting electrodes to achieve high-performance LAWE and, in turn, expedite the adoption of LAWEs in hydrogen production and the transition towards low-carbon economies.
Funder
Advanced Light Source
Hydrogen and Fuel Cell Technologies Office
Publisher
The Electrochemical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献