Abstract
Tailored 3D (Ni and NiCo) metallic foam architectures were produced by electrodeposition and decorated via electrochemical routes with manganese oxide (MnOx) to serve as positive electrodes for supercapacitors. For comparative purposes, an electrode made of commercial Ni foam was also prepared. The foam-based electrodes were paired with a carbon cloth electrode and used to assemble asymmetric electrochemical cells. The electrochemical response of these cells was studied by applying different electrochemical techniques. In addition, two different protocols (cycling and floating) were applied to assess cells durability and fade. Despite the significant differences in the decorated foams morphology and structure their electrochemical responses revealed similar trends. The electrodes made of tailored foams showed higher specific capacitance, better capacitance retention at high current load and enhanced cycling stability compared to the electrodes made of commercial foam. The asymmetric cells made with the tailored foams revealed higher (maximum) specific energy (11–14 Wh kg−1) and specific power (1.3–1.4 × 104 W kg−1) compared to cells assembled with commercial foams (8.4 Wh kg−1 and 6.3 × 103 W kg−1). The durability tests evidenced that corrosion of the NiCo electrodeposited foams and electrochemical dissolution of MnOx are possible causes of cells degradation.
Funder
Consejo Superior de Investigaciones Científicas
Ministerio de Ciencia e Innovación
European Regional Development Fund
Fundação para a Ciência e Tecnologia
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献