A Study on the Capacity Degradation in Na3.2V1.8Zn0.2(PO4)3 Cathode and Hard Carbon Anode Based Sodium-Ion Cells

Author:

Subasinghe Lihil UthpalaORCID,Gajjela Satyanarayana ReddyORCID,Wang ChenORCID,Law MarkasORCID,Balaya PalaniORCID

Abstract

In this manuscript, the impact of operating conditions such as voltage window, and operating temperature on electrochemical performance and cycle life of Zn-substituted Na3.2V1.8Zn0.2(PO4)3 (NVZP) vs hard carbon (HC) coin cells filled with 1 mol dm−3 NaBF4 in tetraglyme is presented. Initially, the cells are cycled for 500 times at C/2 charge and 1 C discharge in three different voltage windows (4.20–1.00 V, 4.05–1.00 V and 4.05–1.50 V) and at two temperatures (28 °C and 40 °C) and are subjected to periodic internal resistance and impedance measurements. The elemental composition of the electrodes harvested after cycling reveals that vanadium dissolution with accompanying deposition on the HC electrode and irreversible loss of sodium causes increased cell impedance. The identified degradation mechanisms, which causes severe capacity fade, are found to be accelerated in the cells cycled over wider voltage windows, particularly at elevated temperature. The best cycling performance and lowest impedance are recorded for the cells cycled within 4.05–1.50 V at 28 °C owing to negligible vanadium dissolution. Under these optimized testing conditions, a prototype 18650 cell, shows impressive capacity retention of 77% after 1000 cycles.

Funder

National University of Singapore

National Research Foundation

Ministry of Education, Singapore

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3