Photoelectrochemical Modelling of Semiconducting Electrodes for Neural Interfacing

Author:

Chambers AndreORCID,Prawer Steven,Ahnood Arman

Abstract

Semiconducting electrodes are increasingly utilised for neural interfacing applications, such as neural recording, stimulation, and photomodulation. To characterize the performance of these electrodes, photoelectrochemical analysis is often undertaken in biologically relevant electrolytes. These include electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and for photomodulation applications, photocurrent (PC) measurements. From such measurements, it is possible to deduce key properties of semiconductor surfaces, such as electrochemical impedance and capacitance, as well as mechanisms of charge transfer. To extract these parameters from the experimental data, equivalent electrical circuit modelling is often employed, but usually only for a single technique at a time which often misses key insights about the processes occurring at the electrode-electrolyte interface. Here we present an equivalent circuit model that simultaneously describes the results from CV, EIS, and PC transient measurements. Using semiconducting nitrogen-doped ultrananocrystalline diamond (N-UNCD) electrodes in saline solution, we show that the model describes physical mechanisms that occur at the interface with electrolyte, encompassing the space charge region, the electrical double layer, and the electrolyte. Using the model we are able to optimize parameters relevant for neural interfacing and suggest that this framework may assist in the characterization of other semiconducting electrodes.

Funder

Australian Government Research Training Program

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3