Avoiding Thermal Issues During Fast Charging Starting with Proper Cell Selection Criteria

Author:

Gonzalez-Aguirre EnekoORCID,Gastelurrutia Jon,Suresh Patil Mahesh,del Portillo-Valdes Luis

Abstract

Proper cell selection is determinant to optimize systems and reduce risks for new and high demanding areas such as electromobility. Thermal performance must be an indispensable selection criterion to avoid thermal issues in these fields, so cells should be correctly characterised and modelled. In this paper, an improved cell selection methodology that focuses on the thermal performance criterion especially for fast charging applications is proposed. After a first selection, two cell candidates were characterised and their heat generation was modelled and compared. With the selected cell, heat generation rate was determined and a 3C fast charge was performed to evidence the predicted thermal performance. The improved methodology identified a cell with an advantageous entropic heat coefficient (EHC) for fast charging, decreasing the heat energy generation by 54% concerning the other candidate cell, which results in optimisation of the thermal management system (TMS). This emphasizes the importance of proper cell selection based on thorough thermal characterization.

Funder

European Commission

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3