Abstract
Micro zinc-air batteries (micro-ZABs) are a promising power source for miniature devices, attracting great attention due to their high energy density, biodegradability, and safety. Operating ZABs in an ultralean, minimum volume electrolyte regime is a productive approach to maximize energy density. However, an ultralean electrolyte ZAB is more susceptible to unfavorable reactions than one containing a larger amount of electrolyte. In particular, side reactions that result in hydroxide ion (OH−) consumption significantly hinder the electrochemical performance of the micro-ZAB. The mechanisms of such side reactions are studied through titrations and electrochemical impedance spectroscopy (EIS). The experimental results demonstrate that both carbonation and zincate accumulation contribute to the consumption of OH− in ultralean alkaline hydrogel electrolytes and can significantly impact electrochemical performance. Under the conditions studied, for an alkaline polyvinyl alcohol (PVA) hydrogel electrolyte, the average consumption rate of OH− due to carbonation is measured to be 5.22
×
10−7 mol min−1 cm−2. A diffusion-reaction model is developed to understand the carbonation process. Adopting parameters from the literature on aqueous systems, the model shows good agreement with experimental results, suggesting that the carbonation process of PVA alkaline hydrogel electrolytes is similar to that of alkaline aqueous electrolytes. The electrochemical performance of the micro-ZAB is modeled based on the consumption rates of the OH− and is shown to be in good agreement with experimental data.
Funder
Defense Advanced Research Projects Agency
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献