A Mg-In Alloy Interphase for Mg Dendrite Suppression

Author:

Lee Brian C.ORCID,See Kimberly A.ORCID

Abstract

Mg metal batteries have attracted much attention as an alternative to Li-ion technology due to the high abundance and volumetric capacity of Mg metal. Further, early reports show that Mg is less prone to dendritic growth compared to Li, thereby improving the safety and long-term reversibility of Mg metal anodes. However, dendritic growth of Mg can be observed in various conditions, causing cell shorting and capacity loss. Herein, we report a chemically-formed Mg-In alloy interphase that suppresses nonuniform Mg growth during electrochemical reduction. Ex-situ X-ray diffraction shows that upon reduction, Mg alloys into the Mg-In interphase with no evidence of Mg deposition on top of the surface during initial cycles. Interestingly, further reduction results in Mg depositing underneath the interphase, which confirms Mg mobility through the interphase. However, the alloying reaction is kinetically limited, leading to significant Mg deposition on top of the interphase at high current densities. Thus, alloys on Mg can affect deposition morphologies, but are limited by the kinetics of Mg conduction through the alloy.

Funder

David and Lucile Packard Foundation

Alfred P. Sloan Foundation

Camille and Henry Dreyfus Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3