Abstract
The present study introduced the fabrication and electroanalytical characterization of a novel mirabegron (MIR) voltammetric screen-printed sensor. The sensing platform was based on zirconium oxide nanoparticles (ZrO2NPs) integrated printing carbon ink with enhanced electrocatalytic activity towards the electrooxidation of the MIR molecule at the electrode surface. Under the optimum measuring parameters, MIR exhibited an irreversible oxidation peak at 0.922 V with a diffusion-controlled reaction and the participation of one electron/proton in the electrooxidation process. The zirconium oxide nanoparticles based screen-printed electrodes (ZrO2NPs/SPEs) showed improved performance within the linear MIR concentration ranged from 10.0 to 261.8 ng ml−1 and limit of detection (LOD) value of 2.72 ng ml−1. The introduced ZrO2NPs/SPEs offered higher sensitivity with the possibility of mass production and miniaturization compared with other MIR sensors. Based on the achieved selectivity, the presented electrodes can be applied for the simultaneous differential pulse voltammetric (DPV) monitoring of MIR in the presence of various degradation contaminates and excipients. Furthermore, the presented electroanalytical approach was tested for the sensitive quantification of MIR in biological samples and pharmaceutical formulations with acceptable recovery values in agreement with the official method.
Funder
The authors extend their appreciation to the Deputyship for research & innovation, Ministry of Education in Saudi Arabia for funding this research work
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献