Optimization and Fabrication of Binder-Free Nickel-Copper Phosphate Battery-type Electrode Using Microwave-Assisted Hydrothermal Method

Author:

Gerard Ong,Numan Arshid,Khalid MohammadORCID,Ramesh S.,Ramesh K.

Abstract

In this study, a binder-free nickel-copper phosphate battery-type electrode was fabricated using a microwave-assisted hydrothermal technique. The fabrication process was optimized with Design of Experiment (DoE) software and then validated experimentally. The electrode made at 90 °C for 12.5 min, with a Ni:Cu precursor ratio of 3:1, had the highest specific capacity. The experimental specific capacity of the optimized nickel-copper phosphate (Ni3-Cu-P) binder-free electrode was 96.2% of the theoretical value predicted by the software, which was within 10% error. Moreover, the growth of amorphous Ni3-Cu-P electrode material with irregular microspheres of small size was observed on the surface of nickel foam. These amorphous microspherical shapes of the Ni3-Cu-P electrode material provide more electroactive sites and a larger active surface area for faradaic reaction. In electrochemical energy storage applications, the Ni3-Cu-P electrode outperformed the bare Ni-P and Cu-P electrodes, with the highest areal capacity (0.77 C cm−2), the lowest charge transfer resistance (81.7 Ω), and the highest capacity retention (83.9%) at 2.0 mA cm−2. The study indicates that the Ni3-Cu-P electrode’s exceptional electrochemical properties result from the interaction between nickel and copper in the binary metal phosphate framework, making it an excellent choice for battery-type electrodes used in electrochemical energy storage applications.

Funder

Sunway University

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3