Abstract
In this study, a binder-free nickel-copper phosphate battery-type electrode was fabricated using a microwave-assisted hydrothermal technique. The fabrication process was optimized with Design of Experiment (DoE) software and then validated experimentally. The electrode made at 90 °C for 12.5 min, with a Ni:Cu precursor ratio of 3:1, had the highest specific capacity. The experimental specific capacity of the optimized nickel-copper phosphate (Ni3-Cu-P) binder-free electrode was 96.2% of the theoretical value predicted by the software, which was within 10% error. Moreover, the growth of amorphous Ni3-Cu-P electrode material with irregular microspheres of small size was observed on the surface of nickel foam. These amorphous microspherical shapes of the Ni3-Cu-P electrode material provide more electroactive sites and a larger active surface area for faradaic reaction. In electrochemical energy storage applications, the Ni3-Cu-P electrode outperformed the bare Ni-P and Cu-P electrodes, with the highest areal capacity (0.77 C cm−2), the lowest charge transfer resistance (81.7 Ω), and the highest capacity retention (83.9%) at 2.0 mA cm−2. The study indicates that the Ni3-Cu-P electrode’s exceptional electrochemical properties result from the interaction between nickel and copper in the binary metal phosphate framework, making it an excellent choice for battery-type electrodes used in electrochemical energy storage applications.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献