Abstract
The investigation on the designing and fabrication of highly efficient electrocatalysts for hydrogen evolution reaction (HER) is critical for future applications in renewable sustainable energy. The present work reports the hydrothermal synthesis of two-dimensional MoS2 and MoS2-TiO2 nanostructures. The as-prepared nanostructures were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman analysis, UV–vis-NIR, and photoluminescence spectrophotometry and vibrating sample magnetometer (VSM). Systematic electrochemical measurements for HER were performed and MoS2-TiO2 nanocomposites demonstrated the lowest onset potential in comparison with MoS2. The results suggest that the nanofusion interface between MoS2 nanoflakes and TiO2 nanoparticles induced an efficient charge transfer from the conduction band of MoS2 to TiO2 and favored the reduction of H+ at active sites. We believe the present work can open up new possibilities that would provide deep insights for the rational design of 2D materials-based catalysts for energy storage and conversion applications.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献