Editors’ Choice—Review—Polymer Electrolyte Fuel Cell Science and Technology: Highlighting a General Mechanistic Pattern and a General Rate Expression for Electrocatalytic Processes

Author:

Gottesfeld ShimshonORCID

Abstract

This article has been written for students and teachers of the science and technology of low-temperature fuel cells, as well as for scientists and engineers actively involved in research and development in this area. It offers first an analysis of fuel cell electrocatalytic processes, identifying a common pattern in the mechanisms of these processes which serves as basis for a universal expression describing the non-linear V vs log J dependences observed under kinetic control. This analysis serves, in turn, as an introduction to reviews of several polymer electrolyte fuel cell technologies covering both science and engineering aspects and including process mechanisms and rate equations for the fuel cell electrode processes. These reviews highlight the requirement of explicit consideration of various types of overpotential-driven site activation steps in the analysis of experimentally observed V vs log J dependences. In addition to the mature technology of proton-conducting membrane fuel cells, the H2/air and NH3/air polymer electrolyte fuel cells using a hydroxide-ion conducting membrane as the electrolyte, are also discussed. Finally, a brief summary of remaining research and development needs and priorities is offered for each type of polymer electrolyte fuel cell discussed. This paper is a Critical Review in Electrochemical and Solid State Science and Technology (CRES 3 T).

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3