Abstract
Local catalyst surface structure and environment can play a significant role towards catalytic activity and selectivity. Surface functionalization using organic additives, such as amino acid chains or peptides, can alter surface properties. Density Functional Theory calculations are used to evaluate the potential dependent surface stability of different terminations of the Fe2O3 (0001) surface. Adsorption of L-Cysteine in different redox states and through different binding modes (carboxylic: O-Fe, amine: N-Fe and thiol: S-Fe) is evaluated. At moderate electrochemical reducing conditions, Fe2O3(0001) exposes a partially reduced termination with both surface H atoms and undercoordinated Fe atoms in the outermost layer. L-Cysteine adsorption occurs most preferentially through carboxylic acid, O-Fe, binding and does not significantly alter the relative surface stability of different surface terminations. A partially reduced surface with L-Cysteine functionalization will be stable under electroreduction conditions. Stable functionalization of an oxide material through amino acid chains or peptide adsorption may provide an additional design lever to develop improved catalytic systems.
Funder
Division of Graduate Education
Basic Energy Sciences
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献