Highly Active Electrospinning Electrode Based on MOF for High-Performance Vanadium Flow Batteries

Author:

Liu Lansong,Zhang Xihao,Zhang Yifan,Zhang Yanbo,Zhou Qi,Hou Shaoyu,He Hongxiang,Zhao Jingling,Liu JianguoORCID,Yan Chuanwei

Abstract

Electrospinning technology has demonstrated excellent prospects in the preparation of structurally controllable functional carbon nanofibers for vanadium flow batteries. However, traditional electrospinning carbon nanofibers used for vanadium flow batteries still suffer from defects in electrochemical activity. Herein, a highly active carbon nanofiber electrode based on metal-organic framework materials has been prepared. The introduction and carbonization of the metal-organic framework UiO-66 in the fibers increase the mesoporous structure of the electrode surface. Additionally, the carbonized UiO-66 forms catalytic ZrO2, which enhances the catalytic activity of the carbon nanofibers. Compared to traditional electrospinning carbon nanofibers, the carbon nanofiber electrode based on metal-organic framework exhibits significantly improved wettability and electrochemical properties, which enhance the mass transfer performance and electrochemical activity. The vanadium flow battery adopting active carbon nanofibers achieves an energy efficiency of 83.33% at 200 mA cm−2, and possesses excellent durability performance with unobvious decay after 1000 charge-discharge cycles at 200 mA cm−2. This study provides guidance for further synthesis of high-performance electrodes for vanadium flow batteries.

Funder

Central Guidance on Local Science and Technology Development Fund of Liaoning Province

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3