Investigations into the Dynamic Acoustic Response of Lithium-Ion Batteries During Lifetime Testing

Author:

Galiounas EliasORCID,Iacoviello FrancescoORCID,Mirza MateenORCID,Rasha LaraORCID,Owen Rhodri E.ORCID,Robinson James B.ORCID,Jervis RhodriORCID

Abstract

Techniques using acoustic waves to interrogate batteries are increasingly investigated in the literature due to the appeal of three main properties: they are non-destructive, relatively low cost and have acquisition rates enabling operando testing. Popular demonstrations attempt to extract degradation markers from acoustic data, by continuous monitoring, and to attribute them to degradation modes. This is founded on the premise that the speed of sound depends on mechanical properties, such as the density and stiffness. Nevertheless, additional sensitivities of an acoustic time-of-flight analysis are often neglected, leading to incomplete experiments that can overstate the capabilities of the technique. In this work, such sensitivities are quantified and the use of pulse tests instead of CCCV protocols is recommended to elucidate the concurrent dynamic evolution of temperature, voltage and acoustic signals. A degradation experiment is performed, with pulse sequences incorporated in periodic reference performance tests. Dynamic parameters are extracted from each pulse; specifically, the dynamic rise of the time-of-flight (ΔToFrise) and temperature (ΔTemprise) signals. Their evolution with degradation is traced and a statistical comparison of the main effects is performed. It is concluded that markers of degradation in the dynamic acoustic response are very subtle, masked by the effects of temperature.

Funder

Faraday Institution

Aerospace Technology Institute

STFC Batteries Network

Engineering and Physical Sciences Research Council

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3