Aqueous Ammonia Wetting of Gas-Diffusion Media for Electrochemical Cells

Author:

Santamaria Anthony D.ORCID,Mortazavi MehdiORCID

Abstract

Increased interest in liquid ammonia (NH3) for hydrogen storage can be attributed to its lack of carbon, high energy density to volume and mass ratios (17.6 wt% hydrogen), a ubiquitous supply and distribution network, and lower cost. Recent progress in direct ammonia fuel cells for power generation, as well as ongoing work on the electrochemical synthesis of ammonia, motivate the need for fundamental investigations of aqueous ammonia interactions with electrode materials. Porous gas-diffusion media (GDM) play a large role in facilitating liquid, gas, and charge transport and are an inherent part of these technologies membrane electrode assemblies (MEA). This work characterizes how key wetting properties such as contact angle, advancing/receding contact angles, adhesion force, and breakthrough pressure are influenced by GDM wet-proofing, thickness, and structure. These properties are studied for aqueous ammonia solutions with 0, 10, 20, and 30 wt% NH3. The higher concentrations of NH3 along an electrode surface can lead to lower contact angles as surface tension is reduced. Wet-proofing with PTFE loadings up to 10 wt% increases hydrophobicity, while higher loadings have diminishing effects. The results are useful to those involved with modeling, design, construction, and optimization of these systems.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3