Thermo-Mechano-Electrochemical Analysis in Cylindrical Electrode Particles of Lithium-Ion Battery

Author:

Li JiayingORCID,Liu Yulan,Wang B.

Abstract

A thermo-mechano-electrochemical model is proposed in this paper to study the coupled effect on diffusion induced stresses (DISs) in cylindrical electrode particles. The traditional heating model, Bernardi’s model, is modified to be practical in particle dimension. And the finite deformation theory as well as stress-induced diffusion hypothesis are also adopted to establish equations of the whole coupled system. By means of numerical simulation, the result of incipient thermal behavior shows significant dependence on both initial concentration of lithium-ion in the particle and capacity of heat interchange at particle surface. The DISs influenced by thermal behavior display amplification that is small (about 2% in 3C condition) but tend to increase with higher charging and discharging rate. Moreover, when temperature increase reaches 220 K, the result of DISs in the adiabatic model demonstrates prominent amplification which exceeds 12%. Therefore, thermal behavior is supposed to be taken into consideration when dealing with a quick-charging problem.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3