Sensitivity Enhancement of Electrochemical Biosensor for Point of Care (POC) Applications: Vi Antigen Detection as a Case Study

Author:

Maurya Ranjan KumarORCID,Alam M. A.,Ahamad Nadeem,Kishore Kaushal,Prajesh Rahul,Choudhary Megha,Bhalla Vijayender,Agarwal Ajay

Abstract

A novel approach for signal enhancement of electrochemical biosensors by incorporating mechanical vibrations has been developed. We report the electrochemical study of the ferricyanide and ferrocyanide Fe CN 6 3 / 4 a redox couple, at room temperature (∼25 °C), under the effect of mechanical vibrations of different frequencies applied to the sensor, for sensitivity enhancement. The experimental results showed a sensitivity enhancement of ∼332% (from 3.125 nA μ M 1 to 13.5 nA μ M 1 ) at 88.75 Hz of vibration. This novel approach of signal sensitivity enhancement is also validated with antibody immobilization-based Vi antigen detection for typhoid assessment. The sensitivity enhancement up to ∼15% is achieved for Vi antigen detection under the mechanical vibration of 120 Hz. The sensor is fabricated using microfabrication technology. The vibration-assisted ultrasensitive biosensing platform is also prototyped as a portable and Internet of Thing (IoT) enabled device, suitable for point-of-care applications. Detailed features of the prototype along with the test results are elaborated in the paper.

Funder

Council of Scientific and Industrial Research, India

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3