Abstract
Composite solid electrolytes with ceramic particles dispersed in a polymer matrix are considered a correct choice for all-solid-state batteries. These electrolytes balance the high ionic conductivity of superionic-ceramic conductors and the elasticity of polymers. Here, Li||LiFePO4 batteries with 30 wt% of LATP embedded in PEO20:LiTFSI show superior performance at elevated temperature. After ∼150 cycles, cells retained 84% of their original capacity compared to only 51% for batteries with no additive. At 5 C cells demonstrate 43% higher capacity. In symmetric cells with blocking and non-blocking electrodes and all-solid-state batteries LATP lowers the impedance of the electrode-electrolyte interface ensuring cycling stability. LATP improves performance by stabilization of the cathode-electrolyte interface, apparently the major contributor to the cell impedance.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献