Acoustic Response Characteristics of Lithium Cobaltate/Graphite Battery during Cycling

Author:

Sun BoORCID,Zhang ChuangORCID,Liu Suzhen,Jin Liang,Yang Qingxin

Abstract

Lithium-ion battery (LIB) has become an essential part of various advanced energy storage products due to their excellent performance, but the research on battery degradation is always challenging. The technology of using ultrasound to characterise the state of LIBs has unique advantages compared with other non-destructive testing methods. However, there have only been a few studies on the analysis of battery cycle performance through acoustic response results. In this paper, from the perspective of electrochemical-acoustic field coupling, the ultrasonic count is introduced to characterise the battery state. The acoustic response characteristics of the LIB in the cycling are analysed combined with the conventional acoustic metrics. Based on the continuous fatigue damage model, the acoustic count can infer partial change evolution of the overall effective Young’s modulus of the battery. This study shows that the characterisation of the battery state can provide further thinking for the mechanical evolution of the batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

State Key Laboratory of Power System and Generation Equipment

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference31 articles.

1. Layered lithium cobalt oxide cathodes;Manthiram;Nat. Energy,2021

2. How we made the Li-ion rechargeable battery;Goodenough;Nat. Electron.,2018

3. Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations;Qi;J. Electrochem. Soc.,2014

4. Battery state-of-charge estimation based on regular/recurrent gaussian process regression;Sahinoglu;IEEE Trans. Ind. Electron.,2018

5. Changes of LiCoO2 cathode material for Li-ion battery during long cycling;Zhang;Electrochem. Solid-State Lett.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3