Abstract
Lithium plating is commonly observed in anodes charged at fast rates, and can lead to capacity loss and battery safety issues. The increased risk of plating has been attributed to transport limitations, and architectured electrodes may reduce plating risk. However, while theoretical studies have shown that reaction non-uniformity arises due to interplay of transport limitations, anode open circuit voltage behavior and reaction kinetics, its effect on lithium plating has not been studied. We use analytic and numerical simulations to predict onset of plating in graphite anode half-cells at high C-rates and demonstrate how anodes with layered porosities can delay plating. Simplified analytical models identify trends for plating onset and predictions are calibrated against numerical models. A calibrated numerical model of graphite demonstrates qualitative agreement with analytical model predictions. This reaction inhomogeneity mechanism occurs in the absence of lithium ion depletion, indicating that these mechanisms may contribute to capacity loss independently or simultaneously. A bilayer model of graphite exhibits delayed plating onset, and an optimization procedure is presented. This theoretical work presents quantitative and mechanistic insight on how reaction inhomogenity affects lithium metal plating onset and can be used as a guide to engineer anodes resistant to lithium plating.
Funder
Office of Energy Efficiency and Renewable Energy
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献