2D-Layered Structure WS2 Nanosheets with Improved Electrochromism for Organic-Based Device

Author:

Zhang Bo,Wang Hui,Luo Jie,Liu Shengli,Tian YuanyuanORCID

Abstract

A solid-state electrochromic device is assembled via polythiophene (P3HT) and tungsten disulfide (WS2)-introduced ethyl viologen (EV) layers. The WS2 nanosheets are prepared via a facile one-step hydrothermal technique and investigated via scanning electron microscopy, X-ray diffractometer and Raman spectra. The device exhibits the enhanced electrochromic properties, such as response time (0.9 s/1.3 s), cyclic stability (1000 cycles), coloration efficiency (410 cm2 C−1), and the reversible color switching from pink to blue at the small applied potential (±1.6 V). This indicates that WS2 with graphene-like 2D-layered nanostructure has the weak van der Waals force between the layers, which can store and transfer electrical charges between the films and electrolytes, thus improving the carrier mobility, which is crucial for improving the properties of electrochromic device. In addition, the introduction of WS2 promoted the device to become one of the most efficient polythiophene-viologen based devices. Therefore, this work provides a basis for the development of new electrochromic devices as the alternatives to the graphene-based devices.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3