Author:
González F.,Garcia-Calvo O.,Tiemblo P.,García N.,Fedeli E.,Thieu T.,Urdampilleta I.,Kvasha A.
Abstract
The development of novel solid electrolytes, which can be processed using solvent-free methods, is one of the keys for successful industrialization of solid state batteries and their further implementation in electrical vehicles. Here, we study thermoplastic solid state electrolytes based on polyethylene oxide (PEO), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and two inorganic fillers with different morphology and nature (modified sepiolite (TPGS-S) and garnet-type Li7La3Zr1.75Nb0.25O12 (LLZNO) prepared by solvent free extrusion method. Several thermoplastic polymer electrolytes (TPEs) are prepared and comprehensively studied. Composite thermoplastic electrolyte TPE-S10G10 containing 10 wt% of TPGS-S and 10 wt% of LLZNO fillers shows the best electrochemical performance in Li-LiFePO4 solid state batteries operating under 0.2C/0.5D cycling conditions at 60 °C. Solid state cell with TPE-S10G10 electrolyte retains 80% of initial discharge capacity after 540 cycles. Thus, a synergetic effect of using two different fillers, which can be exploited during the development of TPEs, is clearly demonstrated.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献