Experimental Concerns of Current Collector Interference and Electrolyte Creep During Zinc-Air Battery Testing

Author:

Labbe MatthewORCID,Ivey Douglas G.ORCID

Abstract

Evaluating the electrochemical performance of catalysts towards the oxygen reduction and evolution reactions in zinc-air batteries is a routine process often conducted using a two-electrode cell. At the air electrode, a current collector is necessary if a carbon paper-based gas diffusion layer (GDL) is employed. The catalytic properties of the current collector may interfere with the studied catalyst on the GDL if flaws in cell design allow electrolyte contact to be made with the current collector. At the zinc electrode, highly alkaline electrolytes (e.g., KOH), with high surface tension, can easily climb up the electrode and accumulate at the interface between the cell and the surrounding atmosphere. An oxygen concentration cell is then enabled by the deposited electrolyte and the zinc electrode is rapidly corroded until failure, prematurely ending a long-term cycling test.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Alberta Future Energy Systems

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3