Abstract
There is rapidly growing interest in the electrochemical reduction of both nitrite and carbon dioxide to mitigate environmental concerns and sustainably produce fuels, chemicals, and fertilizers. Ammonia and urea are key targets in this area, and have been produced simultaneously by coreduction of NO2⁻ and CO2 at a variety of electrocatalysts. The salicylate spectrophotometric method is commonly employed to quantify both products, with urea determined by difference following decomposition with urease. However, this method can be influenced by numerous interferences and matrix effects. Here the electrochemical coreduction of NO2⁻ and CO2 at iron phthalocyanine electrodes has been investigated in order to accurately determine the ammonia and urea production. Urea concentrations were determined by salicylate, diacetyl monoxime and liquid-chromatography-mass spectrometry methods, while the salicylate method and nuclear magnetic resonance spectroscopy were used to determine ammonia. Urea was produced at low overpotentials, with a maximum faradaic yield of 5.8% at −0.047 V vs RHE, while a maximum 85% yield of ammonia occurred at −0.347 V. It is shown that the salicylate method can provide accurate ammonia and urea analyses when a standard addition method is employed, reaction conditions are carefully controlled and the accuracy of calibration slopes are verified.
Funder
National Research Council Canada
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献