Abstract
Performance and cost requirements for emerging storage applications challenge existing battery technologies and call for substantial improvements in cell energy and rate capability. Convection batteries can reduce mass transport limitations commonly observed during high current operation or with thick electrodes. In prior proof-of-concept work, while convection was shown to improve cell performance, its effectiveness was limited in the select cases studied. To understand the feasibility of the convection battery more comprehensively, we develop a mathematical model to describe convection in a Li-ion cell and evaluate performance as a function of a broad range of cell dimensions, component properties, as well as electrochemical and flow operating conditions. Qualitatively, we find that electrolyte flow enhances accessible capacity for cells with large electrolyte diffusive transport resistance and low initial amounts of electrolyte salt by reducing spatial concentration gradients and, thus, allowing for efficient high current operation. Quantitatively, by leveraging dimensional analysis that lumps >10 physical and cell parameters into representative dimensionless groups, we describe the efficacy, trade-offs, and upper performance bounds of convection in an electrochemical cell. Our analyses suggest that this format has the potential to enable high-power energy-dense storage which, in turn, may offer new application spaces for existing and emerging intercalation chemistries.
Funder
Deshpande Center for Technological Innovation, Massachusetts Institute of Technology
National Science Foundation Graduate Research Fellowship Program
National Defense Science and Engineering Graduate Fellowship
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献