Modelling and Accelerated Testing of Catholyte Stability in Vanadium Flow Batteries

Author:

Buckley D. NoelORCID,Oboroceanu DanielaORCID,Quill NathanORCID,Lenihan Catherine,Lynch Robert P.ORCID

Abstract

Using our standard methodology, we examined the thermal stability of vanadium flow battery positive electrolytes over a range of temperature from 30 to 70 °C with stable lifetimes from 11 min to 87 days. At higher temperatures (45 °C–70 °C) measurements showed excellent reproducibility but at lower temperatures (30 °C–45 °C) showed some scatter. Measurements at higher temperatures are in good agreement with our (single-slope) model which is based on earlier data but there is some divergence from the model at lower temperatures. Arrhenius plots of the data show two linear regimes: one in the range 45 °C–70 °C and another in the range 30 °C–45 °C, the latter having a higher Arrhenius slope. Based on linear least-squares best fits in these two regimes, we have formulated an improved stability model (two-slope model). We use our models to derive expressions for accelerated testing of thermal stability using increased temperature, increased vanadium concentration and decreased sulfate concentration and estimate values for the acceleration factors over a range of test and use temperatures and concentrations. We analyse the effect of changing concentration to counteract the decrease in electrolyte stability at higher temperatures and derive expressions to calculate the necessary concentrations.

Funder

Enterprise Ireland

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3