Deconvoluting Charge Transfer Mechanisms in Conducting Redox Polymer-Based Photobioelectrocatalytic Systems

Author:

Weliwatte N. SamaliORCID,Simoska OljaORCID,Powell DanielORCID,Koh MiharuORCID,Grattieri MatteoORCID,Whittaker-Brooks LuisaORCID,Korzeniewski CarolORCID,Minteer Shelley D.ORCID

Abstract

Poor electrochemical communication between biocatalysts and electrodes is a ubiquitous limitation to bioelectrocatalysis efficiency. An extensive library of polymers has been developed to modify biocatalyst-electrode interfaces to alleviate this limitation. As such, conducting redox polymers (CRPs) are a versatile tool with high structural and functional tunability. While charge transport in CRPs is well characterized, the understanding of charge transport mechanisms facilitated by CRPs within decisively complex photobioelectrocatalytic systems remains very limited. This study is a comprehensive analysis that dissects the complex kinetics of photobioelectrodes into fundamental blocks based on rational assumptions, providing a mechanistic overview of charge transfer during photobioelectrocatalysis. We quantitatively compare two biohybrids of metal-free unbranched CRP (polydihydroxy aniline) and photobiocatalyst (intact chloroplasts), formed utilizing two deposition strategies (“mixed” and “layered” depositions). The superior photobioelectrocatalytic performance of the “layered” biohybrid compared to the “mixed” counterpart is justified in terms of rate (D app), thermodynamic and kinetic barriers (H, E a), frequency of molecular collisions (D 0) during electron transport across depositions, and rate and resistance to heterogeneous electron transfer (k 0, R CT). Our results indicate that the primary electron transfer mechanism across the biohybrids, constituting the unbranched CRP, is thermally activated intra- and inter-molecular electron hopping, as opposed to a non-thermally activated polaron transfer model typical for branched CRP- or conducting polymer (CP)-containing biohybrids in literature. This work underscores the significance of subtle interplay between CRP structure and deposition strategy in tuning the polymer-catalyst interfaces, and the branched/unbranched structural classification of CRPs in the bioelectrocatalysis context.

Funder

Office of Naval Research

University of Utah USTAR shared facilities supported, in part, by the MRSEC program of NSF

National Science Foundation

Irving S. Sigal Postdoctoral Fellowship by the American Chemical Society

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3