Optical Modulation and Phase Distribution in LiCoO2 upon Li-Ion De/Intercalation

Author:

Banifarsi Sanaz,Joshi YugORCID,Lawitzki Robert,Csiszár Gábor,Schmitz Guido

Abstract

Modulation of reflectance resulting from the change in optical constants in Li x CoO2 during lithium de/intercalation is studied and quantified by in-operando and ex situ optical spectroscopy. To this aim, the LiCoO2 (LCO) thin films are sputter deposited using radio-frequency ion-beam sputtering. The films are structurally characterized by X-ray diffraction and transmission electron microscopy. The reversible electrochemical and electrochromic performance is determined by in-operando optical reflectance. Ex-situ reflectance, at particular charge states, is used to determine the optical constants by modeling the optical spectrum using the Clausius-Mossotti relation. The model reveals a dominant resonant wavelength at 646 nm for the fully intercalated state of LCO. For the delithiated state or Li0.5CoO2, a much broader and significantly larger absorption peak is obtained by the model description. This significantly broad and intense absorption peak can be associated with the conducting nature of the films upon lithium removal. Furthermore, the observed complex refractive index (CRI), evolving with the lithium content, is justified by the prior reported density of states calculations. With the CRI, the corresponding variation of the real and imaginary part of the dielectric function reveals that the intercalation of lithium and the consequent phase propagation follows a layer-like reaction.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3