Highly Efficient Inner Surface Polishing of Fe-Cr-Ni Alloy Cylinder via Isotropically Tuned Electrochemical Etching

Author:

Khan Muhammad AjmalORCID,Zhan Zejin,Yi Rong,Ji Jianwei,Zhang Linfeng,Zhang Xinquan,Deng HuiORCID

Abstract

In this study, the inner surface of a Fe-Cr-Ni alloy cylinder produced through extrusion is processed by electrochemical isotropic etching polishing (IEP). The electric field simulation predicted a high current density at protrudes, pertinent for passivation layer breakdown and proficient dissolution. Initially, the effect of cathode diameter and current density was investigated on planarization and current efficiencies, material removal rate (MRR), and etching behavior of IEP of grinded Fe-Cr-Ni alloy. IEP of the as-extruded inner surface realized a 94% improvement in the Sa roughness (from 5.33 μm to 0.34 μm), while the initial surface morphology and instantaneously breaking metal lumps seriously influenced the final Sa roughness and polishing duration. Furthermore, the as-extruded and grinded Fe-Cr-Ni alloy substrates were polished simultaneously, whereupon the IEP of the latter produced a mirror-like, highly uniform, and mechanically superior surface with 37% higher planarization efficiency and 19% greater wall thickness. However, due to falling off metal lumps, the IEP of the as-extruded substrate registered higher current efficiency (∼38%) than the grinded substrate (∼30%). IEP realizing a rapid improvement in the line profile and Ra roughness of the grinded Fe-Cr-Ni alloy shows that IEP can efficiently improve the performance of functional inner surfaces to application grade.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3