Growth of the Serrated GaN Nanowire and its Photoelectrochemical Application

Author:

Cai Wenhan,Yu Lingya,Lee Chun-Yu,Wang Lilin,Sun Shujing,Shen Kun-ChingORCID,Chen Chenlong

Abstract

Introducing polyhedral facets into a high surface-to-volume nanowire structure (i.e., serrate-shaped or screw thread-like nanowire) is an effective way for boosting the photoelectrochemical (PEC) activity. However, fabricating such nanowires with serrated surfaces remains a challenge because it usually involves many complex processes, thus limiting mass activity. Here, we demonstrate a strategy for natural growth of the serrated GaN nanowires on a LiGaO2 substrate by using an Au catalyst-assisted vapor-liquid-solid (VLS) method. The specific GaN nanowire grew through an atypical growth mechanism due to the partial deformation of the Au catalyst. The serrated GaN nanowire exhibited a higher photocurrent density of 0.391 mA cm−2 at 1.23 V versus RHE, which was approximately 2.3 times that of the GaN film (0.157 mA cm−2). The high stability of the photoresponse and photocurrent of the serrated nanowire was verified in a wide angle-dependent illumination. This work opens a new way for strengthening the PEC performance of the GaN-based photoanodes by introducing serrate-shaped surfaces on the GaN nanowires.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3