On the Electrodeposition of Zinc in Low Magnetic Fields

Author:

McLeod William T.,Glasco Dalton L.,Boni Tyler N.,Bell Jeffrey G.ORCID

Abstract

While aqueous zinc-based batteries have garnered much research on account of their improved safety, lower cost, and easier fabrication over lithium-ion batteries, they remain held back by dendrite growth on the anode. While many different solutions have been proposed, these solutions often greatly complicate the synthesis or materials in the battery. The application of a magnetic field across the battery has been shown to inhibit dendrite formation without the need for any materials or interface engineering. Herein, we provide a study on the effects of low magnetic fields on the electrodeposition and cycling of zinc in various aqueous systems. We demonstrate that although stronger fields have more immediate impacts on the morphology of zinc deposits, low magnetic fields are still suitable for inhibiting dendrite growth over long periods of cycling. Magnetic field strengths as low as 29 mT were shown to decrease charge transfer resistance of zinc ion deposition by up to 54% and to stabilize the cycling of Zn/Zn symmetric cells. Furthermore, the versatility of magnetic field application was demonstrated by affecting the morphology of zinc deposits on both copper and single-walled carbon nanotubes, which are both compatible with anode-free configurations of aqueous zinc-ion batteries.

Funder

Washington Research Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3