Abstract
The morphology of carbon supports for Pt-based proton-exchange membrane fuel cell (PEMFC) catalysts strongly determines their performance at both low and high current density. Porous carbon supports with internally deposited Pt nanoparticles sustain high kinetic activity by shielding Pt from ionomer adsorption, albeit at the expense of poor oxygen mass transport. This work systematically explores an oxidative pre-treatment of commercial Pt/Ketjenblack, termed localized oxidation, which drastically improves oxygen transport and high current density performance (up to 50% at 0.6 V). The method leverages Pt-catalyzed carbon oxidation in the immediate vicinity of internal Pt particles to increase pore accessibility. We analyze the catalyst morphology via N2 physisorption and thermogravimetric analysis (TGA), and correlate these results with extensive electrochemical characterization of low-loaded cathodes (0.06 mgPt cm−2). High current density gains are shown to result predominantly from removing microporous constrictions in the primary carbon particle. We further identify a trade-off between Pt particle sintering and pore widening dependent on the oxidation temperature, which defines an optimum degree of oxidation. Finally, we investigate the susceptibility of locally oxidized catalysts towards start-up/shut-down (SUSD) degradation. Although we find modestly accelerated degradation rates at high oxidation temperatures, this does not outweigh the performance benefit imparted by the pre-treatment.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献