Concentration Dependent Solution Structure and Transport Mechanism in High Voltage LiTFSI–Adiponitrile Electrolytes

Author:

Franko Christopher J.ORCID,Yim Chae-HoORCID,Årén Fabian,Åvall Gustav,Whitfield Pamela S.,Johansson Patrik,Abu-Lebdeh Yaser A.,Goward Gillian R.ORCID

Abstract

The physiochemical properties of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in adiponitrile (ADN) electrolytes were explored as a function of concentration. The phase diagram and ionic conductivity plots show a distinct relationship between the eutectic composition of the electrolyte and the concentration of maximum ionic conductivity in the 25 °C isotherm. We propose a structure-based explanation for the variation of electrolyte ionic conductivity with LiTFSI concentration, where the eutectic concentration is a transitionary region at which the structure changes from solvated contact ion pairs to extended units of [Liz(ADN)xTFSIy]z−y aggregates. It is found through diffusion coefficient measurements using pulsed-field gradient (PFG) NMR that both D L i / D T F S I and D L i / D A D N increase with concentration until 2.9 M, where after Li+ becomes the fastest diffusing species, suggesting that ion hopping becomes the dominant transport mechanism for Li+. Variable diffusion-time (Δ) PFG NMR is used to track this evolution of the ion transport mechanism. A differentiation in Li+ transport between the micro and bulk levels that increases with concentration was observed. It is proposed that ion hopping within [Liz(ADN)xTFSIy]z−y aggregates dominates the micro-scale, while the bulk-scale is governed by vehicular transport. Lastly, we demonstrate that LiTFSI in ADN is a suitable electrolyte system for use in Li-O2 cells.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3