Author:
Tsushima Shohji,Suzuki Takahiro
Abstract
The fibrous electrodes used in redox flow batteries are a key component of the batteries and have a determining effect on their performance. In this work, a two-dimensional numerical model of redox flow batteries was developed and used to optimize the architecture of the electrodes employed in vanadium redox flow batteries with interdigitated flow fields. The developed model was validated and subsequently used to determine the optimized electrode architecture. During the optimization process, we considered the fiber diameter, porosity, and thickness of the fibrous electrode as well as the geometrical properties of the channel. Numerical simulations revealed that the cell performance can be improved significantly by employing electrodes consisting of finer fibers. We also show that multiple-parameter optimization that considers the electrode properties and channel geometry is essential for improving the design of redox flow batteries.
Funder
Japan Science and Technology Agency
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献