Abstract
This work uses accelerating rate calorimetry to evaluate the impact of cell chemistry, state of charge, cell capacity, and ultimately cell energy density on the total energy release and peak heating rates observed during thermal runaway of Li-ion batteries. While the traditional focus has been using calorimetry to compare different chemistries in cells of similar sizes, this work seeks to better understand how applicable small cell data is to understand the thermal runaway behavior of large cells as well as determine if thermal runaway behaviors can be more generally tied to aspects of lithium-ion cells such as total stored energy and specific energy. We have found a strong linear correlation between the total enthalpy of the thermal runaway process and the stored energy of the cell, apparently independent of cell size and state of charge. We have also shown that peak heating rates and peak temperatures reached during thermal runaway events are more closely tied to specific energy, increasing exponentially in the case of peak heating rates.
Funder
Office of Electricity Research and Development
National Highway Traffic Safety Administration
Vehicle Technologies Program
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献