High Areal Capacitance of Flexible Supercapacitors Fabricated with Carbon Cloth-Carbon Fiber-TiO2 Electrodes and Different Hydrogel Polymer Electrolytes

Author:

Lal Mamta Sham,Ramaprabhu SundaraORCID

Abstract

Developing suitable electrode material and electrolyte is critical for fabricating a flexible supercapacitor with large areal capacitance. Furthermore, the compatibility between electrode material and electrolyte is essential. Herein, a carbon cloth-carbon fiber-TiO2 (CC–CF–TiO2) based flexible electrode is designed and developed for the first time and tested electrochemically in various electrolytes. More importantly, the electrochemical studies performed in both half-cell and full-cell studies are discussed. The highest areal capacitance of 270 mF cm−2 is realized for CC–CF–TiO2 flexible electrode in 1 M H2SO4 aqueous electrolyte at 10 mA cm−2 current density. Full-cell flexible supercapacitor fabricated with hydrogel polymer electrolyte demonstrates the maximum energy density and power density as 4.56 μWh cm−2 and 418.48 μW cm−2 respectively. The attained values are highly encouraging in comparison to the old reports. The results obtained in this work demonstrate the potential of our fabricated flexible supercapacitor for next-generation wearable energy storage applications.

Funder

Indian Institute of Technology Madras

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3