Voltage-Dependent First-Principles Simulation of Insertion of Chloride Ions into Al/Al2O3 Interfaces Using the Quantum Continuum Approximation

Author:

Campbell QuinnORCID

Abstract

Experiments have shown that pitting corrosion can develop in aluminum surfaces at potentials > − 0.5 V relative to the standard hydrogen electrode (SHE). Until recently, the onset of pitting corrosion in aluminum has not been rigorously explored at an atomistic scale because of the difficulty of incorporating a voltage into density functional theory (DFT) calculations. We introduce the Quantum Continuum Approximation (QCA) which self-consistently couples explicit DFT calculations of the metal-insulator and insulator-solution interfaces to continuum Poisson-Boltzmann electrostatic distributions describing the bulk of the insulating region. By decreasing the number of atoms necessary to explicitly simulate with DFT by an order of magnitude, QCA makes the first-principles prediction of the voltage of realistic electrochemical interfaces feasible. After developing this technique, we apply QCA to predict the formation energy of chloride atoms inserting into oxygen vacancies in Al(111)/α-Al2O3 (0001) interfaces as a function of applied voltage. We predict that chloride insertion is only favorable in systems with a grain boundary in the Al2O3 for voltages > − 0.2 V (SHE). Our results roughly agree with the experimentally demonstrated onset of corrosion, demonstrating QCA’s utility in modeling realistic electrochemical systems at reasonable computational cost.

Funder

Sandia National Laboratories

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference58 articles.

1. Electrochemical behavior of high purity aluminum in chloride containing solutions;Dibari;Corrosion,1971

2. An EIS study of aluminium barrier-type oxide films formed in different media;Bessone;Electrochimica Acta,1992

3. A point defect model for anodic passive films: II;Lin;Chemical breakdown and pit initiation. Journal of the Electrochemical Society,1981

4. A point defect model for anodic passive films: I. Film growth kinetics;Chao;J. Electrochem. Soc.,1981

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3