Abstract
Experiments have shown that pitting corrosion can develop in aluminum surfaces at potentials > − 0.5 V relative to the standard hydrogen electrode (SHE). Until recently, the onset of pitting corrosion in aluminum has not been rigorously explored at an atomistic scale because of the difficulty of incorporating a voltage into density functional theory (DFT) calculations. We introduce the Quantum Continuum Approximation (QCA) which self-consistently couples explicit DFT calculations of the metal-insulator and insulator-solution interfaces to continuum Poisson-Boltzmann electrostatic distributions describing the bulk of the insulating region. By decreasing the number of atoms necessary to explicitly simulate with DFT by an order of magnitude, QCA makes the first-principles prediction of the voltage of realistic electrochemical interfaces feasible. After developing this technique, we apply QCA to predict the formation energy of chloride atoms inserting into oxygen vacancies in Al(111)/α-Al2O3 (0001) interfaces as a function of applied voltage. We predict that chloride insertion is only favorable in systems with a grain boundary in the Al2O3 for voltages > − 0.2 V (SHE). Our results roughly agree with the experimentally demonstrated onset of corrosion, demonstrating QCA’s utility in modeling realistic electrochemical systems at reasonable computational cost.
Funder
Sandia National Laboratories
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献