Reducing Intrinsic Drawbacks of Ni-rich Layered Oxide Cathode Materials with a Dry Coating Concept of Quasi-solid Nanomaterials towards High-performance Cylindrical Li-ion Batteries

Author:

Chiochan Poramane,Jangsan Chonticha,Anansuksawat Nichakarn,Homlamai Kan,Joraleechanchai Nattanon,Tejangkura Worapol,Sawangphruk MontreeORCID

Abstract

Although Ni-rich layered oxide cathode materials of Li-ion batteries can provide high energy density, their performance degradation over long cycling and safety hazard due to their intrinsic property issues limit their practical long-term applications. Herein, we introduce a concept based on Ni-rich NMC811 core@quasi-solid shell structure. The Li-rich quasi-solid shell material was prepared by infusing 2 M LiTFSI in [EMIM][TFSI] into a whole pore of Al2O3 nanoparticles delivering a high ionic conductivity (2.8 × 10−4 S cm−1) at room temperature (25 °C). Then the shell material with a thickness of ca. 200 nm below a “Play Dough-like” state was coated on NMC811 using a green and scalable mechanofusion process. The 18650 cylindrical Li-ion battery cells using the core-shell cathode and the graphite anode at a pilot-plant manufacturing scale exhibit considerable high-rate capability compared to the pristine NMC811, especially at a high C-rate. The post-mortem analysis demonstrated that with the thick semi-solid shell there is no transition metal dissolution. Also, the battery cells retained a high discharge capacity after long-term cycling without any safety hazards. We believe that the semi-solid encapsulation in this work may be useful for next-generation high-energy Ni-rich Li-ion batteries.

Funder

Office of National Higher Education Science Research and Innovation Policy Council

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3