Nanocolumnar Pt:Ni Alloy Thin Films by High Pressure Sputtering for Oxygen Reduction Reaction

Author:

Ergul-Yilmaz BusraORCID,Yang Zhiwei,Basurrah Assem O.,Perry Mike L.,Reeves Kimberly S.,Cullen David A.,Karabacak Tansel

Abstract

Self-supported nanocolumnar Pt:Ni thin films (TFs) with varying Pt:Ni atomic ratios and Pt mass loadings were produced on a microporous layer (MPL)-like surface composed of carbon particles by high pressure sputtering and examined as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte membrane fuel cells. Cauliflower-like microstructures were observed from scanning electron microscopy imaging. Various Pt:Ni atomic ratios were obtained by simply changing the relative deposition power between Pt and Ni source and investigated by X-ray diffraction and quartz crystal microbalance analysis. Electrochemical characterization of the Pt:Ni-TF/MPL-like-layer/glassy-carbon samples was conducted through benchtop cyclic voltammetry and rotating disk electrode measurements. The electrochemically active surface area (ECSA) was found to be between 22–42 m2 g−1 for different Pt:Ni atomic ratios. Lower Pt mass loadings exhibited a higher ECSA and the catalytic activity of all Pt:Ni ratios increased with the increase in Pt mass loading. The ORR activity of the Pt:Ni-TFs increased in the order of 3:1 < 1:1 < 1:3 with exhibiting a specific activity of 1781 μA cm−2 and mass activity of 0.66 A mg−1 for the Ni-rich film with 1:3 ratio. The catalytic performance of Pt:Ni-TFs were higher than traditional high surface area carbon supported Pt nanoparticles, elemental Pt nanorods, and Pt-Ni nanorods.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3