Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Simplified Electrochemical Model and TSO-TCN

Author:

Lin Chen,Yang Dongjiang,Zhou ZhongkaiORCID

Abstract

Accurate prediction of the remaining useful life (RUL) of lithium-ion battery is critical in practical applications, but is challenging due to the presence of multiple aging pathways and nonlinear degradation mechanisms. In this paper, a method for RUL prediction is proposed combined with battery capacity aging mechanism based on transient search optimization (TSO)-temporal convolutional network (TCN) algorithm. First, the particle swarm optimization algorithm is used to derive three health indicators directly related to capacity loss from a simplified electrochemical model. Then, the TCN parameters are optimized with transient search algorithm to obtain the optimal prediction model. Finally, the RUL prediction are compared with other typical algorithms, and the results show that the proposed method can accurately predict the RUL of lithium-ion battery, and the life prediction error is within 10 cycles. Compared to TCN, the prediction results remain accurate even with less training data, and the error metrics are reduced by about 50% with the maximum error only 7 cycles from the 250th charge/discharge cycle.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3