Abstract
We report here an investigation of the role that various carbon supports have on a model non-precious metal catalyst for the oxygen reduction reaction (ORR) prepared through a molecularly defined terpyridine moiety covalently embedded onto various high surface area carbons (Black Pearls 2000, Ketjen Black 600, Multi-Walled Carbon Nanotubes). A terpyridine modified catalyst has been previously prepared and allowed for the controlled deposition of one specific and unique N3/C active site on the surface of the support. The effect of changing the porosity and surface area of the carbon was analyzed for its oxygen reduction reaction activity and characterized using thermogravimetric analysis, pore size determination, and rotating disk measurements. This system showed that when a more microporous support was used the activity for the oxygen reduction reaction was significantly decreased in acidic media, this could be explained by the differences in the formation and overall accessibility of the active sites on the high surface area supports.
Funder
Natural Sciences and Engineering Research Council of Canada
University of Ontario Institute of Technology
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献