Abstract
The CRISPR/Cas system has gained enormous attention for its excellent gene-editing capabilities. In recent years, the reported trans-cleavage activity of some Cas proteins, including Cas12, Cas13 and Cas14, has given the CRISPR/Cas system an increasingly powerful molecular diagnostic ability. When the CRISPR/Cas system is introduced into the field of electrochemical (EC) biosensor, it confers the high specificity to distinguish single base mismatches of nucleic acid, excellent sensitivity with the limit of detection as low as attomole range, and well meets the point-of-care testing (POCT) requirements of nucleic acid testing (NAT). In this review, we have briefly introduced the history and inherent advantages of the CRISPR/Cas system. The EC sensing platforms based on CRISPR/Cas systems have been compared with the classical fluorescence and colorimetric platforms. And the isothermal amplification strategies suitable for CRISPR/Cas system have been summarized. After that, we have highlighted the application of EC biosensor based on CRISPR/Cas system (EC-CRISPR) in the detection and identification of cancers, bacteria and viruses. Finally, the future prospects of EC-CRISPR have been proposed.
Funder
National Natural Science Funds of China
China Postdoctoral Science Foundation
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献