Abstract
Lithium metal has drawn significant interest as an anode material for next generation lithium (Li) batteries. However, due to its propensity to form dendrites in commonly used electrolytes during repeated cycling, it has not yet been commercialized in secondary batteries. The formation of a Li protrusion is determined by the relative speed of Li+ ions being reduced and how fast they can be replenished in the vincinity of electrode. However, it is very difficult to quantify such kinetic parameters of Li+ ion in different electrolytes, not mentioning the identification of the desired electrolyte recipe to mitigate Li dendrite formation. Herein, we use microelectrodes to study the growth mechanism of electroplated Li by measuring the Li+ diffusion coefficient (DLi) and exchange current density (io) in different electrolytes. The different Li morphologies formed on microelectrodes are well correlated to their diffusion rate and electrochemical reduction speed on the electrode, providing a fast electrochemical tool to screen compatible electrolytes for Li metal batteries.
Funder
National Science Foundation
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献