A Hybrid Screen-Printed Strip for Enhanced Electroanalysis towards Lead and Cadmium in Multi-Matrices

Author:

Raucci Ada,Miglione Antonella,Spinelli Michele,Amoresano Angela,Cinti StefanoORCID

Abstract

Although heavy metals represent a major treat for ecosystem and human health, reference methods for their monitoring are characterized by time-consuming procedures, skilled personel and sophisticated equipment (e.g. ICP-MS, AAS). The development of portable solutions is required, particularly improving interventions and reducing complexity. To this regards, an electrochemical strip for the determination of lead and cadmium in clinical, environmental and food matrices have been developed. The Bismuth film-based flexible device has been optimized and it has been able to detect cadmium and lead, respectively, down to the detection limit of 1.3 and 2 ppb. The use of Whatman No.1 chromatographic paper has allowed to improve the sensitivity towards the detection of heavy metals, because of the porosity that allowed to pre-concentrate species. This led to an improvement in the sensitivity, with a detection limit of 0.3 and 0.5 ppb, respectively, to cadmium and lead, and offers the possibility to tune the sensitivity according to needs, e.g., improving the number of pre-concentration steps. Subsequently, the application of the electrochemical sensor in drinking water, mussel and blood serum was evaluated, demonstrating how these hybrid polyester-paper electrochemical strips can significantly lower the time and costs for on-site measurements, through analytical methods of simple use. The accuracy has been evaluated by comparison with ICP-MS measurements, giving satisfactory results.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference33 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3