The Effects of Perfluoroalkyl and Alkyl Backbone Chains, Spacers, and Anchor Groups on the Performance of Organic Compounds as Corrosion Inhibitors for Aluminum Investigated Using an Integrative Experimental-Modeling Approach

Author:

Milošev I.ORCID,Kokalj A.ORCID,Poberžnik M.ORCID,Carrière Ch.ORCID,Zimerl D.,Iskra J.ORCID,Nemes A.ORCID,Szabó D.ORCID,Zanna S.,Seyeux A.ORCID,Costa D.ORCID,Rábai J.ORCID,Marcus P.ORCID

Abstract

The ability of surfactant-like compounds to inhibit the corrosion of aluminum in NaCl solution was systematically investigated. The basic idea of this study was to scrutinize the effect of type of backbone chain (alkyl and perfluoroalkyl), length of backbone chain (number of carbon atoms 7, 10, and 17), various anchor groups (carboxylic, thiol, and imidazole) and presence of alkylene and benzene spacers between perfluoroalkyl chain and anchor group. To tackle these effects, three model studies were designed for alkaline etched, superhydrophilic aluminum surface and then approached experimentally and by density functional theory modeling. This enabled us to decouple the adsorption affinity of selected anchor groups on the hydroxylated aluminum surface from the lateral intermolecular cohesive interactions between hydrophobic backbone chains. Fourteen compounds were used to study the changes in the surface composition, wettability and the electrochemical barrier properties. For the carboxylic anchor group, the length and type of chain are important for barrier properties and also for tuning the wettability of the surface. The addition of alkylene spacer to perfluoroalkyl chain significantly affects the properties of the modified surface. Thiol and imidazole anchor groups, however, are not efficient inhibitors regardless the type and length of backbone chains.

Funder

ANR The French National Agency

Javna Agencija za Raziskovalno Dejavnost RS

NKFIH National Research, Development and Innovation Office Hungary

Ministrstvo za Izobraževanje, Znanost in Šport

M-Era.Net

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3