Abstract
The ability of surfactant-like compounds to inhibit the corrosion of aluminum in NaCl solution was systematically investigated. The basic idea of this study was to scrutinize the effect of type of backbone chain (alkyl and perfluoroalkyl), length of backbone chain (number of carbon atoms 7, 10, and 17), various anchor groups (carboxylic, thiol, and imidazole) and presence of alkylene and benzene spacers between perfluoroalkyl chain and anchor group. To tackle these effects, three model studies were designed for alkaline etched, superhydrophilic aluminum surface and then approached experimentally and by density functional theory modeling. This enabled us to decouple the adsorption affinity of selected anchor groups on the hydroxylated aluminum surface from the lateral intermolecular cohesive interactions between hydrophobic backbone chains. Fourteen compounds were used to study the changes in the surface composition, wettability and the electrochemical barrier properties. For the carboxylic anchor group, the length and type of chain are important for barrier properties and also for tuning the wettability of the surface. The addition of alkylene spacer to perfluoroalkyl chain significantly affects the properties of the modified surface. Thiol and imidazole anchor groups, however, are not efficient inhibitors regardless the type and length of backbone chains.
Funder
ANR The French National Agency
Javna Agencija za Raziskovalno Dejavnost RS
NKFIH National Research, Development and Innovation Office Hungary
Ministrstvo za Izobraževanje, Znanost in Šport
M-Era.Net
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献